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Abstract We study the mathematical model of the Li+ ions’ intercalation from the
electrolyte into the porous graphite surface of the negatively charged electrode and
further Li diffusion inside the electrode particle. For proper approximation of experi-
mental data we use the cubic polynomial. We prove the multiplicity of the steady state
solutions in a certain range of the electrode potential values. This multiplicity may be
explained by the simultaneous existence of several phases at the graphite electrode
surface. Numerical investigation allows us to demonstrate the experimentally observed
hysteresis. After including the diffusion of Li into the model we compare the charging
time for various electrode structures.

Keywords Butler–Volmer equation · Steady state solution · Multiplicity · Diffusion ·
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1 Introduction

Investigation of the electrode processes is very important for research and develop-
ment of lithium-ion batteries. Such batteries demonstrate the highest energy density
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and voltage level among the rechargeable sources, but at the same time they quickly
lose their capacity, mainly due to the metallic lithium deposition on the electrode
surface.

Porous carbon electrodes are loose conglomerations of roundish particles that
accumulate the Li+ ions from the surrounding electrolyte or return them back. Math-
ematical models for these processes (intercalation and deintercalation) have been
recently proposed by several research groups, for example [1,3,8]. But all these mod-
els do not explain such experimentally observed phenomena as hysteresis and current
density pulses [2].

For this reason we introduce a new mathematical model of Li intercalation and
deintercalation in the carbon negative electrode. At the first step we consider the
Butler–Volmer equation, which couples the electrode potential, the concentration of
Li ions at the electrode surface and the flow of lithium. For our model we take exper-
imental data from [5] and approximate the overpotential dependence on the lithium
concentration with a cubic polynomial using the least square method. Unlike [4–6], our
model yeilds the multiplicity of steady state solutions and the possibility of switching
from one such state into another with a jump.

Then we add to our model the diffusive effects. It is well known that the density
of lithi-um inside the electrode strongly depends on its structure. It is established
experimentally that the micron-size carbon electrode particles may form flat layers,
threads or shapeless clods; see [4–6]. Respectively we consider three variants of one-
dimensional diffusion in the direction perpendicular to the electrode surface: Cartesian
(into the flat layer), cylindrical (into the thread) and spherical (into the particle inside
the clod). We write down the diffusion equation with respect to the lithium concentra-
tion only; the electric potential is supposed to be constant due to the good conductivity
of graphite. At the inner (left) border we set the zero-flux boundary condition, while at
the outer (right) border we apply the same Butler–Volmer equation, which now plays
the role of the boundary condition. Such model allows us to study the influence of
electrode structure on the time of charging.

2 Mathematical models

For proper understanding the dynamics of the diffusive process first of all we should
find its steady states. Initially we restrict ourselves to considering the intercalation of
the Li+ ions on the graphite surface of the negative electrode and ignore the diffusion
into it:
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This process is described by the Butler–Volmer equation (1) from [5]. Here θ = θ (t)
is the normalized concentration of the Li+ ions at the electrode surface, 0 ≤ θ ≤ 1;
Cmax = 1.8 × 10−2 mol cm−3 is the theoretically maximal value of unnormalized
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concentration; U0 = 8.17 × 10−1 V is the equilibrium electrode potential; the param-
eter V is the carbon electrode poten-tial with respect to the reference electrode;
i0re f = 1.0 × 10−3A cm−2 is the reference exchange current density; F = 9.6485 ×
104 C mol−1 is the Faraday’s constant.

The function S(θ ) describes the dependence of the electrode overpotential on its
surface occupancy with lithium. This dependence has been determined experimentally
several times by various research groups; for example [4–6]. We also use their data,
but we replace the 6th order polynomial, suggested by the authors, with the cubic one:
S (θ) = a1 ·θ +a2 ·θ2 +a3 ·θ3, where a1 = 3.85784, a2 = −6.39138, a3 = 3.24005.
It approximates experimental results with the absolute error <4.0 × 10−3.

An important feature of our approximation is the existence of the S-shaped region,
as it is shown in Fig. 1. There are multiple values of θ , and thus three steady state
solutions to (1) for the potential V belonging to [Vmin, Vmax ]. Most probably this mul-
tiplicity appears due to the simultaneous existence of several phases in the sturcture
of the electrode surface as it is reported in [3,7].

We extend model (1) by taking into account the diffusion of the intercalated lith-
ium into the electrode particle. Let the single spatial variable r, 0 ≤ r ≤ Rmax , be
directed perpendicularly to the particle surface. After adding diffusion along r we get
the following problem:
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(4)

θ(0, r) = θ0(r). (5)

Lithium slowly diffuses and redistributes along r, moving from the outer border inside
the particle in case of intercalation and vice versa in case of deintercalation. The direc-
tion of the flow at r = Rmax is given by (4), which is basically the same Butler–Volmer
equation as in (1), but now works as the boundary condition.

From Fig. 1 and Eq. (4) it is easily seen that:

1) for V < Vmin the sign of ∂θ/∂r(t, Rmax ) is positive when 0 < θ(t, Rmax ) <

θupper (V) and the dominant behavior of the model is intercalation; the value of θ

at r = Rmax grows till it reaches θupper ; then θ (t, r) distributes evenly along r till
it reaches the equilibrium solution θ(t, r) ≡ θupper ;

2) for V > Vmax the sign of ∂θ/∂r(t, Rmax ) is negative when θlower (V) < θ(t, Rmax )

< 1 and the dominant behavior of the model is deintercalation; the value of θ at
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Fig. 1 Steady state solutions to (1) as a graph of θ versus V

r = Rmax falls till it reaches θlower ; then θ (t, r) distributes evenly along r till it
reaches the equilibrium solution θ (t, r) ≡ θlower ;

3) for Vmin < V < Vmax the sign of ∂θ/∂r(t, Rmax ) changes thrice when θ runs
from 0 to 1; there is no dominant behavior and θ (t, r) may tend either to θupper or
to θlower depending on the initial distribution θ0(r).

The values of diffusion coefficient D = 1.0 × 10−9 cm s−2 and the particle size
Rmax = 10−3 cm are taken from [5]. Being not a surface, but a volume phenomenon,
diffusion determines the characteristic time of intercalation, while the upper and the
lower stable steady state values of θ follow from the surface boundary condition (4).

3 Numerical results

The curve θ = θ (V) in Fig. 1 is obtained by equating to zero the right hand side of
(1). It is easily seen that there are three steady state solutions for Vmin < V < Vmax .
The upper and the lower states are stable, while the middle one is unstable. Samples
of switching from one steady state to another are shown in Fig. 2:

1) Trajectory A starts from (Vmax + δ, θmax ), 0 < δ � 1; it’s a jump (τ↓ ≈ 1.7 ×
10−2 s) from θ = θmax to θ = θlower .

2) Trajectory B starts from (Vmin − δ, θmin), 0 < δ � 1; it is also a sufficiently
quick jump (τ↑ ≈ 2.9 × 10−2 s) from θ = θmin towards θ = θupper .

As a result, a small perturbation of the electrode potential (Vmax − Vmin + 2δ ≈
0.05 V) causes a sharp variation of the surface concentration of lithium (�θ ≈ 0.5).
Similar jumps were observed experimentally, for example, in [2], but haven’t been
yet reproduced in mathematical modeling. The simultaneous existence of three steady
state solutions to (1) when Vmin < V < Vmax also yields the concentration hysteresis:
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Fig. 2 Switching between the upper and the lower stable steady states in (1)
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Fig. 3 Hysteresis: a non-unique dependence of concentration versus the potential

the values of the time-dependent solution θ = θ (t) may be different for the same value
of V. Let us suppose that V slowly varies with time according to the following law: ini-
tially V(t) = V0 + ν·t, while V(t) changes from V0 to V1; then V(t) = V0 − ν·t, while
V(t) changes back from V1 to V0; let ν = 2 × 10−5B s−1, V0 = −0.2V, V1 = 1.0 V.

Solving (1) numerically with such V(t), we see that the trajectory is quickly attracted
to the stable steady state θ , which corresponds to the current value of V. But when the
potential increases, the concentration follows the upper branch (curve A in Fig. 3),
and when the potential decreases, the concentration follows the lower branch (curve
B in Fig. 3). Such hysteresis was observed in experiments and described in [2].
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Fig. 4 The pulses: current density with respect to the potential
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Fig. 5 Diffusion in case of flat, cylindrical or spherical symmetry

In model (1) we’ve got also the qualitive agreement with experimental data for the
dependence of the current density i(t), which equals F · Cmax · dθ /dt, on the potential
V(t), as it is shown in Fig. 4. This model gives correct switching values of the potential:
the current pulses in [2] appear at V↓ ≈ 0.10 and V↑ ≈ 0.07 V, while model (1) yields
VA ≈ 0.12 and VB ≈ 0.08 V (see Fig. 4). At the same time the computed values of
the current density are nearly twice less than experimental ones.

Numerical results for the diffusive model (2)–(5) were obtained for the initial dis-
tribution θ (0, r) = θmin and the initial potential value V = Vmin ; then the potential
started changing according to the law V(t) = Vmin − ν· t. The qualitive picture in the
cases of flat, cylindrical and spherical symmetry (n = 0, 1 and 2 respectively) remained
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the same: concentration jumped from the lower to the upper steady state in form of a
wave moving from the outer border to the inner one, as shown below in Fig. 5.

In Fig. 5 we see three distributions of lithium: at the initial, intermediate and final
stages of switching. The shapes of the curves θ versus r in cases of the flat, cylindrical
and spherical symmetry are practically identical, but the moments of time, when they
are obtained, are very different: 15, 39 and 85 s for flat case; 11, 20 and 40 s for cylinder
case; 4, 12 and 22 s for spherical case respectively. It means that the switching time
strongly depends on the form of the particle, because all other parameters remain the
same.

The system (2)–(5) was approximated using the symmetric finite difference scheme
with the second order of accuracy with respect to t and r. The obtained algebraic equa-
tions were solved with Seidel iterations on every time step keeping the absolute error
<10−10. Comparing numerical results for (2)–(5) with those obtained for (1), we may
conclude that taking into account the diffusion radically increases the switching time
of the model, from ∼ 10−2 to ∼ 101 s, but doesn’t change the steady state values of
θ . Also it is easily seen that the type of symmetry is important: the switching times in
the flat, cylindrical and spherical symmetry cases differ by several times for the same
particle size and diffusion coefficient

4 Conclusion

We’ve carried out mathematical modeling of lithium intercalation into carbon electrode
particles basing on the experimental data from [4–6]. We state that in a certain range
of the electrode potential this process possesses three steady states simultaneously. It
may cause hysteresis and quick jumps from one such state into another under small
perturbations of the potential. The steady state values are determined by the overpo-
tential dependence on the lithium concentration at the electrode surface, while the
characteristic time of switching from one such state into another is determined by the
rate of the volume diffusion of lithium, by the size of the electrode particles and by
their spatial ordering.
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